Overview:
Ramanujan was born in India with no proper education degree as he never manage to pass any school exams. His main interest was in mathematics, neglecting all other subjects. His only activity is sitting somewhere comfortable with his slate and pencil and noisy writings on his slate as he drift away in this mathematical thoughts. From young, Ramanujan came up with many mathematical 'results' on his own (some of which were already been found ages ago in the western part of the world while some became very interesting results as found by other mathematicians later). With no proper training in mathematics, Ramanujan did not know where he was right or wrong in his mathematical arguments. Neither did he know that some of the results which he found out by himself were already made know in the western countries.
Ramanujan tried very hard to approach many significant people in his hometown to help get his mathematics works recognised but no one could help him. It was until a letter from Ramanujan to a mathematician in Cambridge, G.H. Hardy, in which Ramanujan sort to seek help from freed up Ramanujan's mind to wonder freely into mathematics. Hardy felt that Ramanujan was a gem which has not been excavated.
Ramanujan gradually grew recognition when he went over to Cambridge to work on his notebook (which contains all the results he found) with Hardy. The results of this genius was widely spread amgonst the mathematicians in Cambridge and back in India. But Ramanujan's health took the plunge in Cambridge as the WWI came due to his strict vegetarian diet and long work whole day long with no one to take care of him.
Ramanujan died at the age of 33 due to tubercolosis.
The elmo thing you see there is acutally my bookmark.
It's so sad that such a genius man in mathematics died young.
One famous result from him is the Hardy-Ramanujan number: 1729
While sick in the hospital bed, Ramanujan could still explain the number which Hardy told him about the taxi having such a boring number plate.
It is the smallest number which can be expressed as a sum of 2 cube in two different ways.
Go borrow the book if you are interested.
I'm almost finishing mine.
Elmo zooms in to keep your spot,
Peiyan
No comments:
Post a Comment